

Angewandte

Hydrogen Peroxide Adducts

DOI: 10.1002/ange.201606561 Deutsche Ausgabe: Internationale Ausgabe: DOI: 10.1002/anie.201606561

Hydrogen Peroxide Coordination to Cobalt(II) Facilitated by Second-**Sphere Hydrogen Bonding**

Christian M. Wallen, Lukáš Palatinus, John Bacsa, and Christopher C. Scarborough*

Abstract: $M(H_2O_2)$ adducts have been postulated as intermediates in biological and industrial processes; however, only one observable $M(H_2O_2)$ adduct has been reported, where M is redox-inactive zinc. Herein, direct solution-phase detection of an $M(H_2O_2)$ adduct with a redox-active metal, cobalt(II), is described. This $Co^{II}(H_2O_2)$ compound is made observable by incorporating second-sphere hydrogen-bonding interactions between bound H_2O_2 and the supporting ligand, a trianionic trisulfonamido ligand. Thermodynamics of H₂O₂ binding and decay kinetics of the $Co^{II}(H_2O_2)$ species are described, as well as the reaction of this $Co^{II}(H_2O_2)$ species with Group 2 cations.

Hydrogen peroxide is an attractive and green industrial oxidant that is readily prepared from H₂ and O₂.^[1,2] Applications of H₂O₂ include bleaching of cotton and wood pulp^[3,4] and oxygenation of propylene to propylene oxide.^[5] Oxidations by H₂O₂ often employ metal catalysts, possibly involving M(H₂O₂) intermediates, as such adducts have been computationally^[6-9] and kinetically^[10-13] implicated. An Fe^{III}(H₂O₂) species has been proposed in cytochromes P450 as or en route to the ill-defined "second oxidant", the key intermediate in a minor oxidation pathway typically overshadowed by the canonical pathway proceeding through Compound I.[14-17] A computational study by Shaik et al. [18] predicted that longevity of Fe^{III}(H₂O₂) adducts in cytochromes P450 is increased when hydrogen-bonding interactions are present between bound H₂O₂ and basic moieties in the active-site pocket (A, Figure 1). In 2015, we reported the first M(H₂O₂) adduct, a Zn^{II} species (**B**, Figure 1), made observable by incorporating second-sphere hydrogen-bonding interactions between H₂O₂ and a trianionic trisulfonamido ancillary ligand. [19] Given the presence of a redox-active metal in the putative $Fe^{III}(H_2O_2)$ species in cytochromes P450, we became interested in studying the viability of coordination of H₂O₂ to redox-active metals. Herein, we detail the first observable M(H₂O₂) adduct bearing a redox-active metal.

The disproportionation of H₂O₂ into O₂ and H₂O is accelerated by redox-active metals,[1] so we anticipated that analogues of B incorporating redox-active metals would be

[*] C. M. Wallen, Dr. J. Bacsa, Prof. Dr. C. C. Scarborough Department of Chemistry, Emory University 1515 Dickey Dr., Atlanta, GA 30322 (USA) E-mail: scarborough@emory.edu

Prof. Dr. L. Palatinus Department of Structure Analysis Institute of Physics of the AS CR, Prague (Czechia)

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under http://dx.doi.org/10. 1002/anie.201606561.

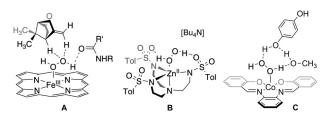
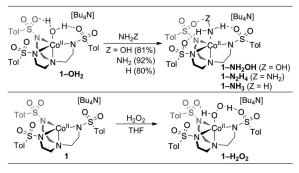



Figure 1. Computed structure [18] demonstrating the importance of hydrogen bonding in an Fe^{III}(H₂O₂) species in cytochromes P450 (A); the first H₂O₂ coordination compound (B);^[19] and a calculated $Co(H_2O_2)$ intermediate in aerobic hydroquinone oxidation (C).^[9].

shorter-lived. We chose to explore a CoII analogue of B, as a Co^{II}(H₂O₂) species (C, Figure 1) had recently been computationally implicated as reactive for oxidation of hydroquinone to benzoquinone. [9] As described below, our observed $Co^{II}(H_2O_2)$ species is shorter-lived than **B**, but its accessibility corroborates the existence of M(H₂O₂) adducts with redoxactive metals and provides a platform for developing catalysts for oxidation reactions with H_2O_2 .

We initiated our studies with [Bu₄N][(Ts₃tren)Co^{II}] (1) and $[Bu_4N][(Ts_3tren)Co^{II}(OH_2)]$ (1-OH₂)^[20] (Scheme 1;

Scheme 1. Synthesis of 1 and 1-L. Yields are of crystalline product.

(Ts₃tren)³⁻ is the ancillary ligand on Zn^{II} in **B**, Figure 1). The H₂O ligand in 1-OH₂ is readily displaced by NH₂OH, N₂H₄, or NH₃ to afford **1-NH₂OH**, **1-N₂H₄**, and **1-NH₃**, respectively. X-ray crystallographic characterization of these species^[35] revealed the presence of hydrogen-bonding interactions between the sulfonyl oxygen atoms and the axialligand protons (Figure 2), including the protons of the distal heteroatom in N₂H₄ and NH₂OH. 1 and 1-OH₂ are differentiated by electronic absorption spectroscopy; [20] however, **1**-**OH**, is not distinguishable from its 5-coordinate nitrogenous analogues 1-NH₂OH, 1-N₂H₄, and 1-NH₃ by this technique

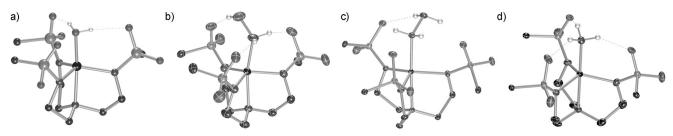


Figure 2. Structures of the anions in 1-OH₂ (a), 1-NH₂OH (b), 1-N₂H₄ (c), and 1-NH₃ (d) in the crystalline state, demonstrating intramolecular hydrogen bonding with the axial ligand ($[Bu_4N]^+$ ions omitted). Tolyl groups of the (Ts_3 tren) $^{3-}$ ligand are truncated for clarity. Only hydrogen atoms of the axial ligands are shown. 1-OH2, which is very similar to a complex reported by Borovik et al., [22] is an incommensurately modulated structure and is therefore represented as a ball-and-stick model.

except by band intensity, where complexes with axial nitrogen ligands show more intense d-d transitions than 1-OH2 (Figure 3).

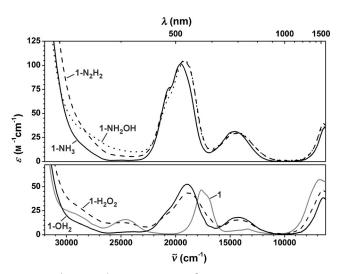


Figure 3. Electronic absorption spectra of 1-NH₃, 1-N₂H₄, 1-NH₂OH, 1-OH₂, 1, and 1-H₂O₂.

In 2015, we reported a method for accessing anhydrous H₂O₂ in THF.^[19] Although we have not encountered problems with such solutions, they should be handled with care, as formation of radicals and/or organic peroxides is possible, particularly upon heating or irradiation. Addition of anhydrous H₂O₂ in THF to **1-OH₂** did not result in any notable changes in the electronic absorption spectrum, and addition of H₂O₂ to 1 provided an absorption spectrum of a fivecoordinate Co^{II} species that was indistinguishable from that of 1-OH₂ (Figure 3). Despite the redox potential of 1-OH₂ $(+78 \text{ mV} \text{ vs. } \text{Fc/Fc}^+ \text{ in } \text{CH}_2\text{Cl}_2)$, [20] no cobalt oxidation products were spectroscopically observable on addition of H_2O_2 to **1** or **1-OH₂**. [21] Generation of 5-coordinate Co^{II} on addition of H₂O₂ to 1 is consistent with either formation of 1-H₂O₂ or formation of 1-OH₂ as a consequence of immediate H₂O₂ disproportionation by Co^{II}. Distinguishing between these possibilities required a method of directly detecting H₂O₂ in these 1/H₂O₂ solutions. Despite the paramagnetic nature of the complexes studied, ¹H NMR spectroscopy

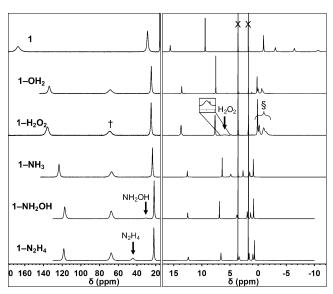


Figure 4. ¹H-NMR spectra (in [D₈]THF) of cobalt complexes scaled to show resonances for visible axial ligands (N₂H₄, NH₂OH, and H₂O₂), the presence of alkyl-bridge signals in the 5-coordinate complexes (†), and positions of $[Bu_4N]^+$ resonances (§), which are dependent on the number of second-sphere hydrogen bonds (0, 2, or 3). Residual $[D_8]$ THF signals are indicated by X.

proved a viable technique for studying coordination of H₂O₂ to 1 (Figure 4).

¹H NMR resonances associated with **1-L** were assigned by comparing spectra of related complexes (see the Supporting Information). All 5-coordinate Co^{II} species showed a CH₂ resonance near 65 ppm, and the presence of this signal in a solution containing H_2O_2 and 1 (†, Figure 4) corroborates the electronic absorption data (Figure 3) revealing a 5coordinate Co^{II} ion. The positions of the Bu proton resonances of the [Bu₄N]⁺ counterion are affected by the presence of axial ligands on cobalt. In the ¹H NMR spectrum of **1**, the Bu signals are spaced between 1 and -11 ppm, where the large paramagnetic shifting is consistent with interaction between the [Bu₄N]+ cation and the cobalt complex in solution, likely through hydrogen bonding between the α hydrogen atoms on Bu and the sulfonyl oxygen atoms as seen in the solid state. For derivatives 1-L with three second-sphere hydrogen bonds (1-NH₂OH, 1-NH₃, and 1-N₂H₄) the Bu signals are less paramagnetically shifted (0 to 5 ppm), consistent with axial coordination disrupting hydrogen bond-

ing between the ions in solution. For 1-OH2, which only contains two second-sphere hydrogen bonds, the Bu proton resonances overlap between 1 and -1 ppm. When anhydrous H_2O_2 is combined with 1, the Bu proton resonances appear between 1 and -2 ppm, similar to **1-OH₂** (§, Figure 4). These data suggest that the axial ligand in a solution of 1 and anhydrous H₂O₂ is diprotic, which could be explained by binding of H₂O or H₂O₂. For complexes **1-OH₂** and **1-NH₃**, the proton resonances corresponding to the axial ligand are not observable by ¹H NMR spectroscopy, even upon addition of excess ligand (see the Supporting Information). However, ¹H NMR spectra of **1-N₂H₄** and **1-NH₂OH** show signals at 44 ppm and 30 ppm, respectively, corresponding to the axialligand protons (Figure 4). The spectrum of a solution of 1 and anhydrous H₂O₂ contains a broad signal at 5.9 ppm (Figure 4). Over time, this signal shifts to 8.8 ppm (closer to that of free H₂O₂ at 9.4 ppm) and decreases in intensity following a firstorder pathway with a half-life of (353 ± 33) s (Figure 5). This

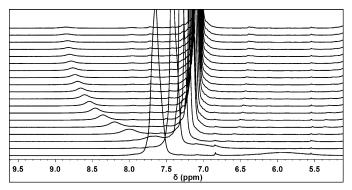


Figure 5. Room-temperature decay of 1-H₂O₂ measured by ¹H NMR spectroscopy (in [D₈]THF). The H₂O₂ resonance shifts from 5.9 ppm to 8.8 ppm. The decay product was confirmed by X-ray crystallography to be 1-OH₂. [35] The tall signal at 7.7 ppm shifting to 7.1 ppm is a methyl group on the sulfonamidate ligand.

shifted H₂O₂ resonance is the first direct evidence that H₂O₂ is binding to Co^{II} in 1, as the ¹H NMR and electronic spectra demonstrate that CoII is five-coordinate under these conditions. The decay product of 1-H₂O₂ was identified as 1-OH₂ by crystallization of the bulk material. The shifting H₂O₂ resonance throughout decay of 1-H₂O₂ points to an equilibrium between free and bound H_2O_2 that is perturbed by H_2O formed upon H₂O₂ disproportionation, leading us to examine the equilibrium constants of binding H_2O_2 and H_2O to 1.

To probe whether H₂O₂ binding is perturbed by the presence of H₂O, H₂O₂ was added to **1-OH**, and its decay monitored by ¹H NMR spectroscopy. Initially, the H₂O₂ resonance appeared at 8.8 ppm (c.f. 5.9 ppm in the absence of H₂O) and then shifted toward 9.1 ppm $[t_b = (1190 \pm 10) \text{ s}].$ When H₂O₂ was added to 1-NH₃, the H₂O₂ resonance remained at 9.5 ppm and decayed with a half-life of (13700 ± 200) s. These data are consistent with H_2O_2 disproportionation occurring upon coordination to 1, and with H₂O₂ being a weaker ligand for 1 than H₂O or NH₃, consistent with descriptions of H_2O_2 as a very poor ligand. [23–27] The first-order decay of 1-H₂O₂ contrasts the second-order decay mechanism of B, which bears the same ligand and counterion, and at the same starting concentration has a half-life of 10⁴ s.^[19] This comparison suggests that the redox-active nature of M has a dramatic effect on the stability of M(H₂O₂) species.

We sought to quantify binding affinities of 1 for H₂O and H_2O_2 . H_2O_2 has been described as a poor ligand [23-27] such that its coordination to metals was not unambiguously detected until 2015.^[19] Prikhodchenko et al. demonstrated that H₂O₂ is a more effective hydrogen-bond donor than H₂O, clarifying the importance of second-sphere hydrogen bonding in H₂O₂ coordination. [27-30] Because of the short lifetime of $1-H_2O_2$, we turned to photometric titrations using electronic absorption spectroscopy to determine the binding constants for H₂O and H_2O_2 to 1 at -70 °C, as decay of $1-H_2O_2$ cannot be detected within one hour at temperatures below -40°C by NMR spectroscopy. Titration of 1 with H₂O or anhydrous H₂O₂ in THF at −70°C afforded the curves shown in Figure 6, from which K_{eq} values for the coordination of H_2O_2 and H_2O to 1 are derived: $(31.3 \pm 0.2) \,\mathrm{M}^{-1}$ and $(31600 \pm 12600) \,\mathrm{M}^{-1}$ at -70°C, respectively. These data establish a preference for binding of 1 to H_2O over H_2O_2 , where K_{eq} for displacing H_2O_2 in **1-H₂O₂** by H₂O at -70 °C is (1010 ± 400) ($\Delta G = -2.8$ kcal mol⁻¹). To our knowledge, this is the first H₂O₂/metal binding constant measured.

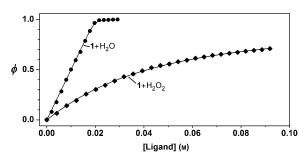


Figure 6. Photometric titrations of 1 with H₂O and H₂O₂ in THF at -70°C. Data are plotted as fractional saturation vs. concentration of the ligand (H₂O or H₂O₂). The curves, which are nonlinear fits to the data, enable calculation of K_{eq} [(3.16 $\pm\,1.26)\times10^4\,\mbox{m}^{-1}$ for H_2O and $(31.3 \pm 0.2) \text{ M}^{-1} \text{ for H}_2\text{O}_2).$

Finally, we probed the reactivity of $1-H_2O_2$. Borovik et al. reported that a species closely related to 1 is inert to PhIO, but upon addition of Group 2 ions, oxidation of the CoII center by PhIO afforded an isolable Co^{III}(µ-OH)Ca²⁺ species.^[22] This transformation may involve a transient Co^{IV} intermediate, as redox-inert cations are known to facilitate two-electron oxidation of Co^{II} to Co^{IV}.[31,32] We probed whether Group 2 ions could similarly promote cobalt oxidation and cleavage of the O-O bond of H_2O_2 in $1-H_2O_2$. We have shown that 1 and related species react readily with Group 2 ions to afford heterotrimetallic sandwich compounds.[20] Addition of M- $(OTf)_2$ $(M = Ca^{2+}, Sr^{2+}, or Ba^{2+})$ to $1-H_2O_2$ resulted in rapid conversion into intensely green products, each with nearly identical electronic absorption spectra. The spectroscopic properties of these green species did not satisfactorily agree with Borovik's report of a red-brown Co^{III}(μ-OH)Ca²⁺ species; [22] however, combination of [(15-crown-5)Ca](OTf)₂

12083

and **1-H₂O₂** afforded X-ray-quality crystals of a $Co^{III}(\mu-OH)Ca^{2+}$ complex (**2**, Scheme 2),^[35] demonstrating Group 2 ion induced oxidation of Co^{II} to Co^{III} by H_2O_2 . The oxidation potential of **1-OH₂** is +78 mV vs. Fc/Fc⁺ in CH_2Cl_2 ,^[20] so the oxidative stability of the Co^{II} ion in **1-H₂O₂** suggests that one-electron redox processes involving **1-H₂O₂** are not preferred.

Scheme 2. Reaction of $1-H_2O_2$ with Ca^{2+} to form **2.** The crystal structure analysis of **2** is included in the Supporting Information. DCM: dichloromethane.

We expect that the Group 2 ions are brought into close proximity with coordinated H₂O₂ in 1-H₂O₂, as we^[20] and Borovik et al.^[22,33] have shown that such sulfonyl oxygen atoms bind Group 2 metal ions without significantly impacting the electronic properties of Co^{II}. We hypothesize that the Group 2 ion induced oxidative conversion of 1-H₂O₂ into 2 may involve a transient Co^{IV}(oxo)/Ca²⁺(OH₂) or Co^{IV}(OH)/ Ca²⁺(OH) species that rapidly reacts with a hydrogen-atom donor, likely THF, to afford the observed Co^{III} species 2. Rapid decomposition of Co^{IV} has been demonstrated in the instability of related Co^{IV}(oxo)^[22,31,32] and Co^{IV}(nitrido)^[34] species. Regardless of mechanism, the Group 2 ion induced conversion of 1-H₂O₂ into 2 provides a new approach to H₂O₂ activation involving coordination to one metal center and activation by a second metal center. We are currently exploring this dual activation of H2O2 for use in oxidation catalysis.

In summary, we have obtained the first direct evidence for formation of an $M(H_2O_2)$ complex with a redox-active metal. Mixing 1 and anhydrous H_2O_2 resulted in coordination of an axial ligand to cobalt(II) at temperatures where H_2O_2 is not disproportionated by 1, and low-temperature photometric titration of 1 with H_2O_2 or H_2O , as well as decay kinetics of 1- H_2O_2 in the presence of H_2O , revealed that H_2O_2 is a weaker ligand for the Co^{II} center in 1 than H_2O . 1- H_2O_2 is stable to oxidation of the Co^{II} center, but addition of [(15-crown-5)Ca](OTf)₂ induced oxidation to afford the $Co^{III}(\mu$ -OH)Ca²⁺ complex 2. Activation of coordinated H_2O_2 by a secondary metal is a novel approach to developing oxidation reactions with H_2O_2 , and our efforts on expanding the coordination chemistry of H_2O_2 and exploiting the reactivity of $M(H_2O_2)$ adducts are on-going.

Acknowledgements

This work was enabled by funds from a National Science Foundation CAREER award (CHE-1455211).

Keywords: cobalt · hydrogen bonds · peroxides · peroxido ligands · second-sphere interactions

How to cite: Angew. Chem. Int. Ed. 2016, 55, 11902–11906 Angew. Chem. 2016, 128, 12081–12085

- C. W. Jones, Applications of Hydrogen Peroxide and Derivatives, Royal Society, Cambridge, UK, 1999.
- [2] M. Lancaster, Green Chemistry, Royal Society, Cambridge, UK, 2002.
- [3] R. Hage, J. W. de Boer, F. Gaulard, K. Maaijen, Adv. Inorg. Chem. 2013, 65, 85 – 116.
- [4] R. Hage, A. Lienke, Angew. Chem. Int. Ed. 2006, 45, 206–222;
 Angew. Chem. 2006, 118, 212–229.
- [5] V. Russo, R. Tesser, E. Santacesaria, M. Di Serio, *Ind. Eng. Cham. Res.* 2013, 52, 1168, 1178
- Chem. Res. 2013, 52, 1168-1178.
 [6] M. Chen, Y. Pan, H.-K. Kwong, R. J. Zeng, K.-C. Lau, T.-C. Lau,
- Chem. Commun. 2015, 51, 13686-13689.
 [7] H.-K. Kwong, P.-K. Lo, K.-C. Lau, T.-C. Lau, Chem. Commun. 2011, 47, 4273-4275.
- [8] L. Ma, Y. Pan, W.-L. Man, H.-K. Kwong, W. W. Y. Lam, G. Chen, K.-C. Lau, T.-C. Lau, J. Am. Chem. Soc. 2014, 136, 7680 – 7687.
- [9] C. W. Anson, S. Ghosh, S. Hammes-Schiffer, S. S. Stahl, J. Am. Chem. Soc. 2016, 138, 4186–4193.
- [10] P. Afanasiev, E. V. Kudrik, J.-M. M. Millet, D. Bouchu, A. B. Sorokin, *Dalton Trans.* 2011, 40, 701 710.
- [11] S. A. Mirza, B. Bocquet, C. Robyr, S. Thomi, A. F. Williams, *Inorg. Chem.* 1996, 35, 1332–1337.
- [12] A. Theodoridis, J. Maigut, R. Puchta, E. V. Kudrik, R. van Eldik, Inorg. Chem. 2008, 47, 2994–3013.
- [13] M. Wolak, R. van Eldik, Chem. Eur. J. 2007, 13, 4873-4883.
- [14] M. J. Coon, Annu. Rev. Pharmacol. Toxicol. 2005, 45, 1-25.
- [15] I. G. Denisov, T. M. Makris, S. G. Sligar, I. Schlichting, *Chem. Rev.* 2005, 105, 2253–2278.
- [16] Cytochrome P450: Structure, Mechanism, and Biochemistry (Ed.: P. R. Ortiz de Montellano), Kluwer Academic/Plenum Publishers, New York, 2005.
- [17] S. Shaik, D. Kumar, S. P. de Visser, A. Altun, W. Thiel, *Chem. Rev.* 2005, 105, 2279 2328.
- [18] B. Wang, C. Li, K. D. Dubey, S. Shaik, J. Am. Chem. Soc. 2015, 137, 7379 – 7390.
- [19] C. M. Wallen, J. Bacsa, C. C. Scarborough, J. Am. Chem. Soc. 2015, 137, 14606 – 14609.
- [20] C. M. Wallen, M. Wielizcko, J. Bacsa, C. C. Scarborough, *Inorg. Chem. Front.* 2016, 3, 142–149.
- [21] Since related Co^{III} species display intense electronic transitions in the visible region, [31] the presence of >0.1% Co^{III} would be visible by electronic absorption spectroscopy in solutions of 1 and H_2O_2 .
- [22] D. C. Lacy, Y. J. Park, J. W. Ziller, J. Yano, A. S. Borovik, J. Am. Chem. Soc. 2012, 134, 17526–17535.
- [23] A. G. DiPasquale, J. M. Mayer, J. Am. Chem. Soc. 2008, 130,
- [24] A. G. Medvedev, A. A. Mikhaylov, A. V. Churakov, M. V. Vener, T. A. Tripol'skaya, S. Cohen, O. Lev, P. V. Prikhodchenko, *Inorg. Chem.* 2015, 54, 8058 – 8065.
- [25] A. A. Mikhaylov, A. G. Medvedev, A. V. Churakov, D. A. Grishanov, P. V. Prikhodchenko, O. Lev, *Chem. Eur. J.* 2016, 22, 2980–2986.
- [26] A. V. Churakov, S. Sladkevich, O. Lev, T. A. Tripol'skaya, P. V. Prikhodchenko, *Inorg. Chem.* 2010, 49, 4762 4764.
- [27] Y. Wolanov, A. Shurki, P. V. Prikhodchenko, T. A. Tripol'skaya, V. M. Novotortsev, R. Pedahzur, O. Lev, *Dalton Trans.* 2014, 43, 16614–16625.
- [28] A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, O. Lev, Chem. Commun. 2009, 4224–4226.

Zuschriften

- [29] P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol'skaya, A. V. Churakov, Y. Wolanov, J. A. K. Howard, O. Lev, CrystEngComm **2011**, 13, 2399-2407.
- [30] M. V. Vener, A. G. Medvedev, A. V. Churakov, P. V. Prikhodchenko, T. A. Tripol'skaya, O. Lev, J. Phys. Chem. A 2011, 115, 13657-13663.
- [31] S. Hong, F. F. Pfaff, E. Kwon, Y. Wang, M.-S. Seo, E. Bill, K. Ray, W. Nam, Angew. Chem. Int. Ed. 2014, 53, 10403-10407; Angew. Chem. 2014, 126, 10571 – 10575.
- [32] F. F. Pfaff, S. Kundu, M. Risch, S. Pandian, F. Heims, I. Pryjomska-Ray, P. Haack, R. Metzinger, E. Bill, H. Dau, P. Comba, K. Ray, Angew. Chem. Int. Ed. 2011, 50, 1711-1715; Angew. Chem. 2011, 123, 1749-1753.
- [33] S. A. Cook, A. S. Borovik, Acc. Chem. Res. 2015, 48, 2407 2414.
- [34] E. M. Zolnhofer, M. Käß, M. M. Khusniyarov, F. W. Heinemann, L. Maron, M. van Gastel, E. Bill, K. Meyer, J. Am. Chem. Soc. **2014**, 136, 15072 - 15078.
- $[35] \ \ CCDC\ 144760\ \ (\textbf{1-OH}_2),\ 144761\ \ (\textbf{1-N}_2\textbf{H}_4),\ 144762\ \ (\textbf{1-NH}_2\textbf{OH}),$ 144763 (2), and 1489712 (1-NH₃) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data

Received: July 6, 2016

Published online: August 25, 2016